ARDS in Pregnancy

UNM 3RD ANNUAL CRITICAL CARE SYMPOSIUM

JESSICA MITCHELL, MD

ASSISTANT PROFESSOR, DEPARTMENT OF EMERGENCY MEDICINE AND SURGICAL CRITICAL CARE

Objectives

1. Review Maternal / Fetal Gas Exchange

2. Review Basics of Adult ARDS Management

3. ARDS Management in the Pregnant Female

Maternal Physiologic Changes in Pregnancy

- ▶ Increased PaO2 (100 110 mmHg)
- ▶ 20 33% increased O2 consumption
- ▶ 30-45% increase in Cardiac Output
- Increased Tidal Volume and Minute Ventilation
- Decreased PaCO2 (27 34 mmHg)
- ► Chronic Respiratory Alkalosis (pH 7.4 7.45)
- Reduced serum bicarb (18 21 mmol/L)
- Reduced FRC
- Decreased LES tone
- Decreased chest wall compliance

Fetal Oxygen Delivery

- Maternal delivery of oxygen to placenta
- Placental transfer of oxygen
- ► Fetal oxygen transport from placenta to fetal tissues

Determinants of Uterine Artery Oxygen Delivery

- Maternal PaO2
- Hemoglobin concentration and saturation
 - ► Alkalosis → leftward shift oxyhemoglobin dissociation curve and increased O2 affinity → decreased O2 transfer
 - ▶ Acidosis → rightward shift oxyhemoglobin dissociation curve and decreased O2 affinity → increased O2 transfer
- Uterine artery blood flow / Maternal cardiac output
 - ► Alkalosis → vasoconstriction uterine artery
 - ▶ Maternal hypotension and/or increased endogenous or exogenous sympathetic stimulation → vasoconstriction uterine artery
 - ► Maternal hypoxia → vasoconstriction

Maternal / Fetal O2 Dissociation Curves

CO2 transfer

- ▶ CO2 is unloaded from the umbilical artery to the uterine vein
- pCO2 fetal umbilical artery > pCO2 maternal uterine vein

Table 3. The Berlin Definition of Acute Respiratory Distress Syndrome		
		Acute Respiratory Distress Syndrome
Tim	ing	Within 1 week of a known clinical insult or new or worsening respiratory symptoms
Chest imaging ^a		Bilateral opacities—not fully explained by effusions, lobar/lung collapse, or nodules
Orig	gin of edema	Respiratory failure not fully explained by cardiac failure or fluid overload Need objective assessment (eg, echocardiography) to exclude hydrostatic edema if no risk factor present
Oxygenation ^b		
	Mild	200 mm Hg < Pa O_2 /Fi O_2 ≤ 300 mm Hg with PEEP or CPAP ≥5 cm H $_2$ O c
	Moderate	100 mm Hg $<$ PaO ₂ /FIO ₂ \le 200 mm Hg with PEEP \ge 5 cm H ₂ O
	Severe	PaO₂/FiO₂ ≤ 100 mm Hg with PEEP ≥5 cm H₂O

alia Dafiati a af Asata Dassinatas Distraca Condi

Abbreviations: CPAP, continuous positive airway pressure; FIO₂, fraction of inspired oxygen; PaO₂, partial pressure of arterial oxygen; PEEP, positive end-expiratory pressure.

^aChest radiograph or computed tomography scan.

^cThis may be delivered noninvasively in the mild acute respiratory distress syndrome group.

b If altitude is higher than 1000 m, the correction factor should be calculated as follows: [Pao₂/Fio₂× (barometric pressure/760)].

ARDS at UNM

- ▶ Mild: PaO2 / FiO2 166 250
- ▶ Moderate: PaO2 / FiO2 83 165
- Severe: PaO2 / FiO2 ≤ 83

Causes of ARDS

- Nonpregnancy Related
 - Sepsis
 - Aspiration
 - Varicella / Influenza**
 - ▶ TRALI
 - Air embolism
 - Drug overdose
 - Fat emboli
 - Trauma
 - Inhalation injury
 - Near drowning
 - Pancreatitis

- Pregnancy Related
 - Pre-eclampsia / Eclampsia
 - Tocolytic induced pulmonary edema
 - Chorioamnionitis
 - Amniotic fluid embolism
 - Trophoblastic embolism
 - Abruptio placentae
 - Ovarian hyperstimulation syndrome
 - Endometritis
 - Septic abortion
 - Retained POC
 - ▶ H1N1 Influenza**

ARDS Management Strategies

- General Principles
 - ▶ PaO2 goal: 55 80 mmHg
 - Low tidal volume ventilation
 - ▶ Use of PEEP
 - ► Limited plateau pressures
 - ▶ Permissive hypercapnia

- Adjunctive Therapies
 - Conservative fluid management
 - Paralytics
 - Inhaled pulmonary vasodilators
 - Prone positioning
 - Open lung ventilation (HFOV or APRV)
 - ▶ ECMO

ARDS modifications for pregnancy – What does the research say???

ARDS modifications for pregnancy – What does the research say???

Prevalence and Mortality

- ▶ 16 to 70 cases / 100,000 pregnancies
- Overall maternal mortality 23-39%
- Rate of fetal loss 23%

Noninvasive Ventilation

 Classically advised against due to decreased LES tone and delayed gastric emptying -> increased risk of aspiration

▶ BUT recent case reports suggest it can be successfully applied in the appropriate patient population, ie. sitting up, fully awake and cooperative

 Always maintain a low threshold to move to mechanical ventilation

Concerns for Intubation

▶ Intubation failure is 8 times more common than in nonpregnant patients

Delayed gastric emptying and increased abdominal pressure ->

Increased risk of aspiration

Decreased oxygen reserve

Edema and hyperemia of airways

Mechanical Ventilation Modifications

- ▶ Maintain PaO2 > 70 mmHg
- Avoid maternal hypocapnia
- Limit maternal permissive hypercapnia, maintain PaCO2 < 60</p>
- Consider elevated intraabdominal pressures and decreased chest wall compliance with plateau pressure targets

Adjunctive therapies

- Paralytics
- ▶ Inhaled pulmonary vasodilators
- ► HFOV
- ▶ APRV
- Proning
- ▶ ECMO

Proning

Samanta, et al

- Limited case reports in late term pregnancy
- Creative positioning
- Use with caution

ECMO

- 2 recently published systematic reviews on ECMO in pregnancy suggest benefit (Anselmi, Moore)
- ▶ Majority of cases from H1N1 outbreak
- ► Maternal survival up to 78%
- ▶ Infant survival up to 65%
- ▶ Hemorrhagic complication rate up to 57% in one small series

Decision to Deliver

- Risk vs Benefit to Mother and Fetus
- Underlying cause of ARDS
- Fetal monitoring once viable duration and frequency of monitoring on individual basis
- Joint decision with all providers
- Method of delivery up to providers
- Consideration of location of delivery with available necessary services if fetus is viable

Key Points

- ARDS is a rare complication of pregnancy, may result from pregnancy or nonpregnancy related causes
- ▶ Maintain PaO2 > 70 mmHg
- Avoid severe hypo or hypercapnia
- Adjunctive strategies remain grossly unchanged,
 although data is lacking
- Proning may be considered with caution
- ECMO may be appropriate strategy when other therapies fail
- Teamwork

References

- Anselmi A et al. Extracorporeal membrane oxygenation in pregnancy. J Card Surg 2015;30:781-786.
- ▶ Cole DE et al. Acute respiratory distress syndrome in pregnancy. Cirt Care Med 2005;33(10):S269-78.
- ▶ Duarte AG. ARDS in pregnancy. Clin Ob and Gyn 2014;57(4):862-870.
- Guntupalli KK et al. Critical illness in pregnancy Part II: Common medical conditions complicating pregnancy and puerperium. Chest 2015;148(5):1333-45.
- Hirani A et al. Airway pressure release ventilation in pregnant patients with acute respiratory distress syndrome: A novel strategy. Resp Care 2009;54(10):1405-1408.
- Irwin Richard S and James M Rippe. Irwin and Rippe's Intensive Care Medicine: Seventh Edition. LW&W, 2012. Print.
- ► Kenn S et al. Prone positioning for ARDS following blunt chest trauma in late pregnancy. Int J of Ob Anesth 2009;18:268-271.
- ▶ Mehta N et al. Respiratory disease in pregnancy. Best Pract Res Clin Ob and Gyn 2015;29:598-611.
- ▶ Meschia G. Fetal oxygenation and maternal ventilation. Clin Chest Med 2011;32:15-19.
- Moore SA et al. Extracorporeal life support during pregnancy. J Thorac Cardiovasc Surg 2016;151:1154-60.
- ▶ Pacheco LD et al. Mechanical ventilation during pregnancy: Sedation, analgesia and paralysis. Clin Ob and Gyn 2014;57(4):844-850.
- Samanta S. How safe is the prone position in acute respiratory distress syndrome at late pregnancy? Am J of Emer Med 2014;32:687.e1-687.e3.
- Schwaiberger D et al. Respiratory failure and mechanical ventilation in the pregnant patient. Crit Care Clin 2016;32:85-95.