ARDS in Pregnancy

UNM 3rd Annual Critical Care Symposium

Jessica Mitchell, MD
Assistant Professor, Department of Emergency Medicine and Surgical Critical Care
Objectives

1. Review Maternal / Fetal Gas Exchange

2. Review Basics of Adult ARDS Management

3. ARDS Management in the Pregnant Female
Maternal Physiologic Changes in Pregnancy

- Increased PaO2 (100 – 110 mmHg)
- 20 – 33% increased O2 consumption
- 30-45% increase in Cardiac Output
- Increased Tidal Volume and Minute Ventilation
- Decreased PaCO2 (27 – 34 mmHg)
- Chronic Respiratory Alkalosis (pH 7.4 – 7.45)
- Reduced serum bicarb (18 – 21 mmol/L)
- Reduced FRC
- Decreased LES tone
- Decreased chest wall compliance
Fetal Oxygen Delivery

- Maternal delivery of oxygen to placenta
- Placental transfer of oxygen
- Fetal oxygen transport from placenta to fetal tissues
Determinants of Uterine Artery Oxygen Delivery

- Maternal PaO2
- Hemoglobin concentration and saturation
 - Alkalosis → leftward shift oxyhemoglobin dissociation curve and increased O2 affinity → decreased O2 transfer
 - Acidosis → rightward shift oxyhemoglobin dissociation curve and decreased O2 affinity → increased O2 transfer
- Uterine artery blood flow / Maternal cardiac output
 - Alkalosis → vasoconstriction uterine artery
 - Maternal hypotension and/or increased endogenous or exogenous sympathetic stimulation → vasoconstriction uterine artery
 - Maternal hypoxia → vasoconstriction
Maternal / Fetal O2 Dissociation Curves

The graph shows the oxygen saturation of hemoglobin (% O_2) against the partial pressure of oxygen (O_2) for fetal hemoglobin (teal) and adult hemoglobin (orange).

- Fetal hemoglobin has a lower oxygen affinity compared to adult hemoglobin.
- At a partial pressure of 19, fetal hemoglobin is approximately 50% saturated, while adult hemoglobin is slightly higher.
- At a partial pressure of 26.8, fetal hemoglobin is about 50% saturated, whereas adult hemoglobin is significantly higher in saturation.
- At a partial pressure of 80, fetal hemoglobin remains relatively lower in saturation compared to adult hemoglobin.
CO2 transfer

- CO2 is unloaded from the umbilical artery to the uterine vein
- pCO2 fetal umbilical artery > pCO2 maternal uterine vein
Table 3. The Berlin Definition of Acute Respiratory Distress Syndrome

<table>
<thead>
<tr>
<th>Timing</th>
<th>Within 1 week of a known clinical insult or new or worsening respiratory symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest imaging</td>
<td>Bilateral opacities—not fully explained by effusions, lobar/lung collapse, or nodules</td>
</tr>
<tr>
<td>Origin of edema</td>
<td>Respiratory failure not fully explained by cardiac failure or fluid overload. Need objective assessment (eg, echocardiography) to exclude hydrostatic edema if no risk factor present</td>
</tr>
<tr>
<td>Oxygenation</td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>(200 \text{ mm Hg} < \frac{\text{PaO}_2}{\text{FiO}_2} \leq 300 \text{ mm Hg with PEEP or CPAP} \geq 5 \text{ cm H}_2\text{O})</td>
</tr>
<tr>
<td>Moderate</td>
<td>(100 \text{ mm Hg} < \frac{\text{PaO}_2}{\text{FiO}_2} \leq 200 \text{ mm Hg with PEEP} \geq 5 \text{ cm H}_2\text{O})</td>
</tr>
<tr>
<td>Severe</td>
<td>(\frac{\text{PaO}_2}{\text{FiO}_2} \leq 100 \text{ mm Hg with PEEP} \geq 5 \text{ cm H}_2\text{O})</td>
</tr>
</tbody>
</table>

Abbreviations: CPAP, continuous positive airway pressure; \(\text{FiO}_2\), fraction of inspired oxygen; \(\text{PaO}_2\), partial pressure of arterial oxygen; PEEP, positive end-expiratory pressure.

a Chest radiograph or computed tomography scan.

b If altitude is higher than 1000 m, the correction factor should be calculated as follows: \([\frac{\text{PaO}_2}{\text{FiO}_2} \times (\text{barometric pressure/760})]\).

c This may be delivered noninvasively in the mild acute respiratory distress syndrome group.
ARDS at UNM

- Mild: PaO2 / FiO2 166 – 250
- Moderate: PaO2 / FiO2 83 – 165
- Severe: PaO2 / FiO2 ≤ 83
Causes of ARDS

- Nonpregnancy Related
 - Sepsis
 - Aspiration
 - Varicella / Influenza**
 - TRALI
 - Air embolism
 - Drug overdose
 - Fat emboli
 - Trauma
 - Inhalation injury
 - Near drowning
 - Pancreatitis

- Pregnancy Related
 - Pre-eclampsia / Eclampsia
 - Tocolytic induced pulmonary edema
 - Chorioamnionitis
 - Amniotic fluid embolism
 - Trophoblastic embolism
 - Abruptio placentae
 - Ovarian hyperstimulation syndrome
 - Endometritis
 - Septic abortion
 - Retained POC
 - H1N1 Influenza**
ARDS Management Strategies

- General Principles
 - PaO2 goal: 55 – 80 mmHg
 - Low tidal volume ventilation
 - Use of PEEP
 - Limited plateau pressures
 - Permissive hypercapnia

- Adjunctive Therapies
 - Conservative fluid management
 - Paralytics
 - Inhaled pulmonary vasodilators
 - Prone positioning
 - Open lung ventilation (HFOV or APRV)
 - ECMO
ARDS modifications for pregnancy – What does the research say???
ARDS modifications for pregnancy –
What does the research say???
Prevalence and Mortality

- 16 to 70 cases / 100,000 pregnancies
- Overall maternal mortality 23-39%
- Rate of fetal loss 23%
Noninvasive Ventilation

- Classically advised against due to decreased LES tone and delayed gastric emptying → increased risk of aspiration
- BUT recent case reports suggest it can be successfully applied in the appropriate patient population, i.e. sitting up, fully awake and cooperative

- Always maintain a low threshold to move to mechanical ventilation
Concerns for Intubation

- Intubation failure is 8 times more common than in nonpregnant patients
- Delayed gastric emptying and increased abdominal pressure → Increased risk of aspiration
- Decreased oxygen reserve
- Edema and hyperemia of airways
Mechanical Ventilation Modifications

- Maintain PaO2 > 70 mmHg
- Avoid maternal hypocapnia
- Limit maternal permissive hypercapnia, maintain PaCO2 < 60
- Consider elevated intraabdominal pressures and decreased chest wall compliance with plateau pressure targets
Adjunctive therapies

- Paralytics
- Inhaled pulmonary vasodilators
- HFOV
- APRV
- Proning
- ECMO
Proning

- Limited case reports in late term pregnancy
- Creative positioning
- Use with caution

Samanta, et al
2 recently published systematic reviews on ECMO in pregnancy suggest benefit (Anselmi, Moore)

- Majority of cases from H1N1 outbreak
- Maternal survival up to 78%
- Infant survival up to 65%
- Hemorrhagic complication rate up to 57% in one small series
Decision to Deliver

- Risk vs Benefit to Mother and Fetus
- Underlying cause of ARDS
- Fetal monitoring once viable – duration and frequency of monitoring on individual basis
- Joint decision with all providers
- Method of delivery up to providers
- Consideration of location of delivery with available necessary services if fetus is viable
Key Points

- ARDS is a rare complication of pregnancy, may result from pregnancy or nonpregnancy related causes
- Maintain PaO2 > 70 mmHg
- Avoid severe hypo or hypercapnia
- Adjunctive strategies remain grossly unchanged, although data is lacking
- Proning may be considered with caution
- ECMO may be appropriate strategy when other therapies fail
- Teamwork
References